

Lecture 4 Machine Learning for Classification

Xu Yuan University of Louisiana at Lafayette

Training

Training Data

Training

Training

Traditional Machine Learning Algorithms

- Support Vector Machines (SVM)
- Random Forest
- K-Nearest Neighbors
- Decision Tree

Classification

How to evaluate the performance of trained model?

Classification Results

- True Positive (TP)
 - The number of spams that are classified as spams

• False Positive (FP)

The number of non-spams that are classified as spams

• False Negative (FN)

The number of spams that are classified as non-spams

• True Negative (TN)

▶ The number of non-spams that are classified as non-spams

Performance Metrics

• Four Metrics

Function of the formula is the formula of the formula is the formula of the f

An Example

• 100 Tweets: 40 spams and 60 non-spams

After classification: 45 spams =35 real spam + 10 non-spams, 55 non-spams = 50 non-spams + 5 spams

45 Spams: 35 real spams and 10 non-spam 55 non-spams: 50 non-spams and 5 spams

An Example

• 100 Tweets: 40 spams and 60 non-spams

After classification: 45 spams =35 real spam + 10 non-spams, 55 non-spams = 50 non-spams + 5 spams

45 Spams: 35 real spams and 10 non-spam

True Positive (TP) False Positive (FP)

55 non-spams: 50 non-spams and 5 spams

True Negative (TN) False Negative (FN)

An Example

• 100 Tweets: 40 spams and 60 non-spams

After classification: 45 spams =35 real spam + 10 non-spams, 55 non-spams = 50 non-spams + 5 spams

45 Spams: 55 non-spams: 35 real spams and 10 non-spam 50 non-spams and 5 spams True Positive (TP) False Positive (FP) True Negative (TN) False Negative (FN) Accuracy = $\frac{TP + TN}{TP + TN + FP + FN} = \frac{35 + 50}{35 + 10 + 50 + 5} = 85\%$ Precision = $\frac{TP}{TP + FP} = \frac{35}{35 + 10} = 77.777\%$ Recall = $\frac{TP}{TP + FN} = \frac{35}{35 + 5} = 87.5\%$ F1 Score = $2 * \frac{77.77\% * 87.5\%}{77.77\% + 87.5\%} = 82.34\%$

Prediction

- How to validate the correctness of your classification
 - On testing data directly?

In real world, no ground observation for comparison!

- The strategy is to label a large dataset
 - Partition the labeled ground truth as training + testing

5-fold Cross-Validation

All Data					
Training data				Test data	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
					Test data

• What is the simplest tree?

Table: From the UCI repository

cylinders	displacement	horsepower	weight	acceleration	modelyear	maker	mpg
4	low	low	low	high	75-78	asia	good
6	medium	medium	medium	medium	70-74	america	bad
8	high	high	high	low	70-74	america	bad
4	medium	medium	medium	low	75-78	europe	bad
4	low	medium	low	medium	75-78	europe	good

Predict mpg=bad

Is this a good tree? Total we get (22+, 18-), which means we are correct on 22 examples and wrong on 18 examples.

A Simple Decision Tree

Recursive step

- Take the original dataset
- Partition it according to the values of the attribute we split on
- Build tree from these records (cyl=4, cyl=5, cyl=6, cyl=8)

Second Level of a Decision Tree

recursively build a tree from these records in which cyl=4 and maker=Aisa

A Full Decision Tree

• Many trees can represent the same concept

Is there a better method?

Entropy

Entropy H(Y) of a random variable Y:

$$H(Y) = -\sum_{i=1}^{K} P(Y = y_i) \log P(Y = y_i)$$

More uncertainty, more entropy!

Information theory interpretation: H(Y) is the expected number of bits needed to encode a randomly drawn value of Y (under most efficient code)

Figure: Entropy of a coin flip

Entropy

High Entropy

- Y is from a uniform like distribution
- Flat histogram
- Values sampled from it are less predictable

Low Entropy

- Y is from a varied distribution(peaks and valleys)
- Histogram has many lows and highs
- Values sampled from it are more predictable

Entropy Example

Entropy:

$$H(Y) = -\sum_{i=1}^{K} P(Y = y_i) \log P(Y = y_i)$$

In this example:

$$P(Y = T) = 5/6$$

$$P(Y = F) = 1/6$$

$$H(Y) = -5/6 \log 5/6 - 1/6 \log 1/6$$

$$= 0.65$$

X_1	<i>X</i> ₂	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Conditional entropy H(Y|X) of a random variable Y conditioned on a random variable X:

$$H(Y|X) = -\sum_{j=1}^{\nu} P(X = x_j) \sum_{i=1}^{K} P(Y = y_i | X = x_j) \log P(Y = y_i | X = x_j)$$

In this example:

$$P(X_1 = T) = 4/6$$

$$P(X_1 = F) = 2/6$$

$$H(Y|X_1) = -4/6(1 \log 1 + 0 \log 0)$$

$$-2/6(1/2 \log 1/2 + 1/2 \log 1/2)$$

$$= 2/6$$

X_1	<i>X</i> ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Used by the ID3, C4.5 and C5.0 tree-generation algorithms. Decrease in entropy (uncertainty) after splitting:

$$IG(X) = H(Y) - H(Y|X)$$

In this example:

 $IG(X_1) = H(Y) - H(Y|X_1)$ = 0.65 - 0.33

We prefer the split $(IG(X_1) > 0)$

X_1	X_2	Y
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

		U I			
RID	age	income	student	credit_rating	Class: buys_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$
$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$
$$+ \frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4}\right)$$
$$+ \frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$
$$= 0.694 \text{ bits.}$$

 $Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$ bits.

Gain(income) = 0.029 bits Gain(student) = 0.151 bits $Gain(credit\ rating) = 0.048$ bits

Random Forest

Scikit-learn Implementation

SVM
from sklearn import svm
clf = svm.SVC()
clf.fit(X, Y)
Random Forest
from sklearn.ensemble import RandomForestRegressor
<pre>rf = RandomForestRegressor(n_estimators = 1000, random_state = 42</pre>
rf.fit(X, Y)
KNN
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier()
knn.fit(X, Y)
Decision Tree
Decision Tree
Trom sklearn.tree import DecisionTreeClassifier
<pre>clf = DecisionTreeClassifier(max_leaf_nodes=3, random_state=0)</pre>
clf.fit(X, Y)

• Model

• Clustering Tweets

• Feature extraction

• Feature extraction

