

Lecture 8 Thermal Inversion Prediction via WeatherLore Model

Xu Yuan University of Louisiana at Lafayette

Thermal Inversion

- Thermal inversion is common natural phenomenon
- Atmospherically, near-surface air temperature > that above the surface

Source: https://lotusarise.com/temperature-inversion-upsc/

Adverse Effect

- Cause various hazards to different socio-economic sectors
 - The changes of dissipation of pesticide spray solution in agriculture
 - PM 2.5 and black carbon percentages are higher during inversion days
 - Highly correlated to hospital visits for acute respiratory and cardiovascular diseases
 - A hidden cause of Titanic Disaster 1912 (from FOX Weather News) <u>https://www.foxweather.com/lifestyle/titanic-weather-thermal-inversion-mirage-optical-illusion</u>

Our Goal

• Challenges

- Lacking of appropriate datasets
- Lacking of an accurate prediction model
- Developing the first AI-based holistic framework for accurate temperature inversion prediction
 - Creating a professional dataset for thermal inversion purpose
 - Propose a method for thermal inversion forecasting

Two Data Sources

WRF-HRRR (2.4G per day)

The South Alabama Mesonet N À ALABAMA MISSISSIPPI Castleberry Andalusia Ashford Leakesville Poarch Creek Florala Geneva Mt. Verne Atmore av Minet Ja Agricola Saraland ISA Campus (ox)e FLORIDA Mobile Dog River Robertsda Frand Ba Gasque Legend Mesonet Station

Mesonet (small)

	Parameters	Resolution	Frequency	Height	Accuracy	Future Prediction
WRF with HRRR	148	3 km * 3 km	1 hour	Upper air	Low	Yes
Mesonet	60	single point	1 minute	Near- surface	High	No

Dataset Design

• South Alabama

Range

latitude: 29.23 to 32.83 longitude: -89.68 to -84.18

Dataset Design

Coordinate: {A-E}{1-6}:{1-9}:{1-9}

Dataset Processing

Dataset Design

• Coordinating

Level-3 and Level-4 coordinating

Station Coordinating Index format: A-E $\{1-6\}$: $\{1-9\}$: $\{1-9\}$

Dataset Design

• Quantifying

class = 5

WeatherLore Model

- Take our crafted dataset as input
- Make accurate temperature inversion prediction over next few time horizons, i.e., next T mins, 2T mins ...

• Feature Extractor

• WeatherLore Codebook

• Lore Aggregator

• Sequence Encoder/Decoder

- 0: Non-temperature inversion
- 1: Low temperature inversion
- 2: Medium temperature inversion
- 3: High temperature inversion

• Feature Decoder

Reconstructing next M intervals' weather patterns

- Five Mesonet Stations:
 - Agricola, Elberta, Mobiledr, Dixie, and Foley
- Data period
 - ▶ 2017 and 2018 for training
 - ▶ 2019 or testing

Mesonet:

2m temperature, 10 temperature, total radiation, quantum radiation, 2m wind speed, 10 wind speed, vertical wind speed, 2m wind direction, 10m wind direction, 2m relative humidity, and 10m relative humidity

It takes 16 minutes to produce all datasets. The dataset size is around 120MB for each quarter.

Id	Feature	Height	level
1	Maximum/Composite radar reflectivity	0	2
2	Wind speed (gust)	0	2
3	Temperature:K	100000 Pa	2
4	Dew point temperature:K	100000 Pa	2
5	U component of wind	100000 Pa	2
6	V component of wind	100000 Pa	2
7	2 metre temperature:K	2 m	2
8	Potential temperature:K	2 m	2
9	2 metre specific humidity:kg kg**-1	2 m	2
10	2 metre dewpoint temperature:K	2 m	2
11	2 metre relative humidity:%	2 m	2
12	2 metre specific humidity:kg kg**-1	2 m	2
13	2 metre dewpoint temperature:K	2 m	2
14	10 metre U wind component:m s**-1	10 m	2
15	10 metre V wind component:m s**-1	10 m	2
16	10 metre wind speed:m s**-1 (max)	10 m	2
17	Upward long-wave radiation flux:W m**-2	10 m	2
18	Downward short-wave radiation flux:W m**-2	10 m	2
19	Derived radar reflectivity	1000 m	2
20	Derived radar reflectivity:dB	4000 m	3
21	Temperature:K (instant)	50000 Pa	3
22	Dew point temperature:K	50000 pa	3
23	U component of wind:m s**-1	50000 Pa	3
24	V component of wind:m s**-1	50000 Pa	3
25	Relative humidity:%	isothermZero	3
26	U component of wind:m s**-1	highestTroposphericFreezing	3
27	Derived radar reflectivity	isothermal 263 K	4
28	U component of wind:m s**-1	25000 Pa	4
29	V component of wind:m s**-1	25000 Pa	4
30	U component of wind:m s**-1	30000 Pa	4
31	V component of wind:m s**-1	30000 Pa	4

• Setting

Inputs:

Level-2: 9×9×18 Level-3: 27×27×8 Level-4: 81×81×5

Feature Extractor:

H = 16

Codebook:

Level-1: 600×16 Others: 1000×16

Sequence Encoder/Decoder:

Inputs: 12 continues time slot, with 5 minutes interval Outputs: 6 continues time slot Hidden state size: 64

Feature Decoder:

Class:2

Outputs:

Size: 1×6

• Temperature inversion forecasting results for 5 stations in four quarters

Accuracy Rates	JFM				AMJ				JAS				OND			
	5	15	30	60	5	15	30	60	5	15	30	60	5	15	30	60
Elberta	88.5	86.3	82.9	76.1	92.4	91.2	90.8	87.8	93.4	91.0	88.7	83.5	86.6	82.2	81.7	75.6
Agricola	92.7	91.1	80.5	75.6	92.1	90.0	85.5	81.4	93.2	87.6	81.1	73.4	86.5	84.8	81.5	77.3
Mobiledr	83.0	82.1	77.6	73.1	90.6	87.2	85.5	80.5	92.7	90.8	84.4	76.8	85.7	83.6	78.8	72.0
Dixie	89.6	83.3	82.9	77.4	93.1	88.1	87.8	82.1	94.2	93.3	92.5	89.7	88.0	82.6	80.4	74.3
Foley	85.4	82.1	80.8	77.3	90.2	89.5	87.3	85.0	93.5	92.4	90.3	88.2	85.4	81.3	80.5	75.1

• Comparative results in terms of Acc (accuracy), Pre (precision), and Rec (recall) at Elberta station in four quarters

Period	Quarter	JFM			AMJ				JAS		OND			
	Models	Acc	Pre	Rec										
	SVM	77.0	68.1	71.3	69.6	69.8	71.6	68.5	77.6	69.7	71.4	72.5	74.8	
5 min	LSTM	79.8	71.4	77.9	70.5	72.4	65.5	68.4	69.3	75.5	72.7	71.7	70.8	
	WeatherLore	88.5	90.3	90.1	92.4	91.5	92.7	93.4	90.7	90.4	86.6	87.4	85.1	
	CNN	65.1	63.5	58.9	67.2	70.4	59.8	70.5	73.3	72.1	61.6	70.0	68.5	
1 hour	CNN-LSTM	67.2	69.3	60.5	67.8	71.1	63.0	75.5	74.2	75.0	65.9	72.1	71.8	
	U-Net	73.0	72.3	66.5	69.1	75.5	68.2	77.3	75.0	77.3	70.2	73.3	72.0	
	WeatherLore	76.1	78.4	78.3	87.8	83.2	86.6	83.5	83.0	85.1	75.6	76.1	77.4	

• Comparison between WeatherLore model and its variants for five Mesonet stations

Metircs	Elberta			Agricola			Mobiledr				Dixie		Foley		
	Pre	Acc	Rec	Pre	Acc	Rec	Pre	Acc	Rec	Pre	Acc	Rec	Pre	Acc	Rec
Lore-Code	79.7	78.4	77.2	76.2	79.4	78.2	83.3	86.7	84.1	79.3	78.1	78.7	80.6	81.2	81.5
Lore-Data	76.5	73.0	75.4	77.1	78.0	75.2	72.7	73.4	75.6	73.4	72.0	73.2	71.5	73.3	72.0
Lore-2	88.5	90.3	89.7	90.8	89.1	84.6	82.7	88.4	82.7	87.9	89.6	87.5	84.6	88.3	85.7
WeatherLore	88.7	90.9	91.5	92.7	89.6	84.7	83.0	88.6	85.2	89.6	90.0	88.0	85.4	88.5	86.1

Conclusion

- Create a dataset for studying the thermal inversion
- Propose the first thermal inversion forecasting model
- Evaluate the performance on a variety of Mesonet stations