

Lecture 8 TweetScore: Scoring Tweets via Social Attribute Relationships for Twitter Spammer Detection

Xu Yuan University of Louisiana at Lafayette

• The online social network (OSN) is indispensable in our daily life.

- Facebook, <u>2.4 billion</u> monthly active users (MAU).
- In Twitter, around 6,000 tweets per second.
- In Tiktok, 1 billion MAU spend around <u>52 minutes</u> per day.

Spammer in Social Network

• Pervasively annoying users, grossly detrimental to social network.

- Degrading the quality of user experience
- Stealing sensitive information
- Economic loss
- Changing political opinions

Collecting and classifying spammers have been the critical problem!

Low accuracy

Unrealistic to process the entire dataset.

Low efficiency

State-of-the-art Solutions

Blindly Spam Collection

- Classifying the spam messages from large-scale network contents or the social relationships.
- <u>Time-consuming</u> and inefficient.

Honeypot-based Solution

- Build honeypots to lure spammers.
- High <u>deployment overhead</u>, low <u>attribute variability</u>
 low <u>deployment flexibility</u>, low <u>network scalability</u>

Graph-based Solution

- Analyzing user relationships.
- Overlook attribute relationships.

Our Goals

- Propose an effective solution to monitor and capture spammers.
 - Monitoring users having potentials of attracting spammers.
 - Take advantages of users' diversity.
- Design a novel solution to classify spams.
 - User activities.
 - User attribute relationships.
 - User relationships.

Outline

- Pseudo-honeypot Monitoring System
- TweetScore Spam Classification Solution
- Experiment Results

Pseudo-honeypot Spam Monitoring System

Pseudo-honeypot

- Screen normal users from a pool of normal users that are more vulnerable to spammers.
 - Identify features meeting spammers' taste
 - Select users having such attributes
- Harness such normal users serving as the pseudo-honeypot.
- Pseudo-honeypot can monitor their streaming posts and behaviors patterns.
 - Having a higher probability of including spam messages.

Pseudo-honeypot vs. Honeypot

- Similar function in attracting and trapping spammers.
- Possess salient advantages as follows:

• Selecting effective features for constructing Pseudo-honeypot.

Pseudo-honeypot Monitoring

• Streaming API construct and monitor Pseudo-honeypots.

Significantly reduce the spammer detection workload.

Pseudo-honeypot Framework

TweetScore Spam Classification Solution

TweetScore Framework

Activity Graph

• Directed weighted graph denotes mention activities.

Attribute Graph

• Directed graph model attribute relationships.

How to score relationships between any two attributes? How to score attributes?

Scoring Attribute Relationships

• Score the relationships between any two attributes.

• Attribute graph transform to **sparse matrix A**.

- Each entry denotes the score of attribute relationship.
- **UV-Decomposition** can be used to predict.

Scoring Attribute Relationships

• Score the relationships between any two attributes.

Scoring Attributes

• Score attribute by using PageRank.

- Run PageRank on attribute graph.
- Attributes have different potentials of attracting spammer's interest.

• PageRank Algorithm

• PageRank Algorithm (2)

Now we imagine that if there were a bot which will follow all the outgoing links, what will be the total time spent by this bot on each of these nodes.

• PageRank Algorithm (2)

The probability for the bot to go to node A

Let's guess the initial probability is 25% for each of the node.

• PageRank Algorithm (3)

Step 1:

Let's guess the initial probability for the bot on each node is 25%.

0.00 0.33 0.50 1.00	0.25		0.458
0.00 0.00 0.50 0.00	0.25	_	0.124
0.50 0.33 0.00 0.00	0.25		0.208
0.50 0.33 0.00 0.00	0.25		0.208

Node A has 3 inward edges, the probability on node A increase. Node B has only 1 inward edge, the probability on node B decrease

• PageRank Algorithm (4)

Step 2:

Let's keep updating:

0.00 0.33 0.50 1.00	0.458	0.354
0.00 0.00 0.50 0.00	0.124 _	0.104
0.50 0.33 0.00 0.00	0.208	0.271
0.50 0.33 0.00 0.00	0.208	0.271

• PageRank Algorithm (4)

Step 1000:

Let's keep updating:

0.00 0.33 0.50 1.00	0.40		0.40
0.00 0.00 0.50 0.00	0.12	_	0.12
0.50 0.33 0.00 0.00	0.24		0.24
0.50 0.33 0.00 0.00	0.24		0.24

It is stable !

The meaning of PageRank score is the importance of the node in a graph.

Scoring Tweets (1)

• Evaluate tweet from most relevant user.

Notation						
С	Current node	r	Self-directed score			
Р	Previous node	р	Mutual behavior score			
<i>x</i> ₁	Inward node	q	Inward score			
<i>x</i> ₂	Outward node	Z.	Outward score			

Node Selection

Scoring Tweets (2)

• Generate Tweet Vector.

Scoring User' Dependence Relationships

• Score User Dependence Vector by using random walk path.

TweetScore Vector

• Consolidate Tweet Vector, sender Dependence Vector, receiverDependence Vector.

TweetScore Framework

Neural Network Model

• We employ the neural network to learn the affluent information

Implementation

• Pseudo-honeypot are constructed by using hashtag-based and trending-based features.

Performance

• Performance of 100-hour data captured by pseudo-honeypot

TABLE. 10-fold cross-validation

Higher AUC means better performance.

Figure. The AUC curves on the 600-hour data.

recision	Accuracy	Recall	F1-macro
0.855	0.872	0.797	0.831
0.811	0.926	0.835	0.852
0.760	0.901	0.722	0.820
0.661	0.454	0.436	0.445
0.976	0.955	0.852	0.927
0.989	0.967	0.914	0.946
	0.855 0.811 0.760 0.661 0.976 0.989	0.855 0.872 0.811 0.926 0.760 0.901 0.661 0.454 0.976 0.955 0.989 0.967	0.8550.8720.7970.8110.9260.8350.7600.9010.7220.6610.4540.4360.9760.9550.8520.9890.9670.914

• Pseudo-honeypot report collected tweets in every 10 hours.

• 600-hour online testing

Pseudo-honeypot vs. other methods

Stringhini	Yang	Lee	Pseudo-honeypot	
0.0067	0.087	0.12 8.6	times 1.03	

Please check our articles:

https://ieeexplore.ieee.org/abstract/document/8809491

https://dl.acm.org/doi/abs/10.1145/3321705.3329836