Introduction of Large

Models

Language

La Chen
Uniwersity of Lowisiana at Lafayette




What 1s a language model?

NS

> A language model 1s a probability distribution over
sequences of words

<= More formally, given a sequence of words
e D ¢ computes the probability
distribution of the next word x+1:
PGHD |50, ... 5Dy

= Joint distribution of a sequence by chain rule:
P(X(l)a "',X(t)) — P(X(l))P(X(2) ‘X(l))P(X(I) ‘x(t_l), ...’x(l))




What 1s a language model?

<= A language model predicts a word 1n a context:

P(blt, s, 0,t) =0.04

/ books [ . |
aptops P(l|t, s, o,t) =0.024
the students opened their —
\, " exams Plelts,0,0=0019
minds

P(mlt, s, 0, t) =0.0037

= A key part ot decoding tasks: speech recognition, spelling
correction, and language generation tasks: machine translation,
summanization, story generation




What 1s a language model?

The color of the sky 1is blue

~ ™\ 91%

Language Model

v

- /

A language model can predict the most probable word (or words) to follow this phrase, based on the statistical

patterns it has learned during training. In the figure, a Language Model may estimate a 91% probability that the word

blue follows the sequence of words The color of the sky is.




What 1s a language model?

P(w | Boston
weather is)

P(“Boston weather is cold”) /

P(“Boston weather is *”)

frigid 0.23

terrible 0.12

great 0.02

fantastic 0.01 Sentence Probability
Aardvarks ate apples 0.00000000241

miserable 0.008

warm 0.005
Boston weather is callous 0.0000000121

hot 0.002 Boston weather is cold 0.0000234
Boston weather is cork 0.00000000291
Boston weather is crane 0.00000000185
Boston weather is crazy 0.00000322
Boston weather is furious 0.00000000112
Boston weather is frigid 0.0000321
Zyzzyx zork zaphod 0.00000000112

r
us
en
ar

ler
ne
i

O

re

id

I Hello!

Martin Saveski (gmail.com)

Hello!

Dear Martin,

How's California? Boston

weather is |

© @ SansSerif ~

A

U]

M~ B I U A~

@68 & 2

v

-

[\




What language models can do?

“Auto-complete” interfaces
O, lafayette| ® X 0

lafayette weather

Q
790 F Tue - Lafayette, LA

4= |afayette jades
Lafayette Parish Sheriff Department - 100 Poydras St, Lafayette, LA

Lafayette

City in Louisiana

= ' lafayette general
= Ochsner Lafayette General Medical Center - 1214 Coolidge St, Lafayette, LA

Q Lafayette Parish School Board
Board of education - 202 Rue lberville, Lafayette, LA

Lafayette Shooters
' Gun shop - 3520 Ambassador Caffery Pkwy, Lafayette, LA

(e lafayette airport
Lafayette Regional Airport - 200 Terminal Dr, Lafayette, LA




What language models can do?

Speech recognition

“‘Boston
A;(())Lésgllc H Decoder ]—» weather is

Feature
extraction

cold
P(X | W)

argmax,, P(X'| W) * P(W)

Language
model

P(W)




What language models can do?

Language Translation

Boston ] [ weather ] [ IS ] { cold ]
v ' ' v

Boston J [ le temps ] [ est J [ frc_)id ]
>][< Y ; Y v ] } reorder

Y Y \ Y } finalize

Le temps J[ de Boston J[ est froid ]

~———/
'




What language

Q&A

Answer questions based on existing
knowledge.

Summarize for a 2nd grader

Translates difficult text into simpler
concepts.

Text to command

Natural language to Stripe API

Create code to call the Stripe API using
natural language.

Parse unstructured data

Create tables from long form text.

Python to natural language

Explain a piece of Python code in human
understandable language.

Translate text into programmatic commands.

models can do?

Grammar correction

Corrects sentences into standard English.

Natural language to OpenAI API

Create code to call to the OpenAI API using
a natural language instruction.

English to other languages

Translates English text into French, Spanish
and Japanese.

SQL translate

Translate natural language to SQL queries.

Classification

Classify items into categories via example.

Movie to Emoji

Convert movie titles into emoji.

https://platform.openai.com/examples

T



https://platform.openai.com/examples

LLanguage modeling history

Large pre-trained

RNN/LSTM language models T5 PaLM
! i : |
. I
Natural Language Word2vec and : Attention : : |
Models N-grams \ mechanism | BERT | GPT-3 :

I

: ; — = ;
Before ML era Multi-task learning : T . : Transformers : : : :
T L : o |
, T—— —— .
‘ ' | 1 e | | I 1 I
I | 1 I | 1 I | 1
: i | | [ | ! [ ! | 1
¢ ® ® ® @ ° 3 e ¢ E) ®

1949-2001 2001 2008 2013 2014 2015 2017 2018 2019 2020 2022




N-gram models

O
oS4

n n-gram 1s a sequence of n words 1n a sentence

A
<= Use the previous n-1 words in a sequence to predict the next
word

<= How? Count how often words follow word sequences in a
training corpus; divide to get cond. prob.

The big red dog

SE
A< 4

nigrams: P(dog) Bigrams: P(dog|red)

U
<= Irigrams: P(dog|big red) Four-grams: P(dog|the big red)




A Bigram Grammar Fragment

eat on 16 eat Thali .03
eat some .06 eat breakfast .03
eat lunch .06 eat in .02
eat dinner .05 eat Chinese .02
eat at .04 eat Mexican .02
eat a .04 eat tomorrow | .01
eat Indian .04 eat dessert .007
eat today .03 eat British .001




A Bigram Grammar Fragment

<start> | 29 want some .04
<start> I'd .06 want Thai .01
<start> Tell .04 to eat .26
<start> I'm .02 to have 14
| want 32 to spend .09

would 29 to be .02

don’t .08 British food .60

have .04 British restaurant 15
want to .65 British cuisine .01
want a .05 British lunch .01




A Bigram Grammar Fragment

<= P(I want to eat British food) = P(I | <start>) P(want|I) P(to | want)
P(eat|to) P(British | eat) P(food | British) = .25*.32*.65*.26*.001*.60
.000080

<= P(I want to eat Chinese food) = .00015

<= Probabilities seem to capture “syntactic” facts, “world knowledge”
<= eat 1s often followed by a noun phrase
<= British food 1s not too popular

<= Limitations: curse of dimensionality: zillions of parameters;
limiting context




Neural language models

= A feed-forward neural network was proposed in 2003 by Bengio et al.

)
"

Solve the curse of dimensionality: dense, low-dimensionality real-
number word vectors

i-th output = P(w, = i | context)

softmax
o0 c o 000 )
AN
) \

most| computation here \

\
\
\
1
tanh !
. oo ) '

C(W(_,H. C(W,_z) C(W[—l) ,
(e e °) (e e °)
Table .. ~., Matrix C p
!goé—up shared parameters
! across words
index for w;_, 4 index for w;_» index for w,_

¢
o




Recurrent NNN-based LMs

<= Recurrent neural networks RNNNs (Mikolov et al., 2010) can memorize the
previous outputs when receiving the next inputs

output distribution

g = softmax (Uh(t) + b2) e RV

hidden states
) = o (Whh(t_l) +We® + bl)

h(9) is the initial hidden state

word embeddings
) — Bp®

words / one-hot vectors
2® ¢ RIV

h©)___ R h(2)
O O O
| W, 10| W, |@
@) 10 @
O O O

— o
W, W,
() S

o)

?[oooo

the
ey

o(2)

students opened
2 (2)

?[oooo

c(3)

2 (3)

>
~
IS
~—

-

]
)

o)

oooo]?[cooo

El

their

(4)




Long Short-lerm Memory

= Recurrent Neural Networks suffer from short-term memory

< vanishing gradient problem: the gradient shrinks as it back propagates through
time

<= If a sequence 1s long enough, 1t’ll have a hard time carrying information from earlier
time steps to later ones

<= Solution: LSTMs [Zaremba et al. 2014] and Gated Recurrent Units (GRU)
= they have internal mechanisms called gates to regulate the flow of information

<= these gates can learn which data in a sequence 1s important to keep or throw away

<= GRU 1s quicker to compute and has fewer parameters than LSTM

RNN LSTM GRU
% a ; "
(- N\ v — ) ?\ ﬁ' he_y 0 2 ’.i.\\ T>
= ” f,T i,r—yi o, r—;%\ X) X);
3 ST el h ml
t-1 L1 1 J Mo
4 4 1 By




Large language models

= lLarge, general-purpose language models, can be
pre-trained and then fine-tuned for specific
purposes

They are built on neural
network architectures,
particularly the
transformer
architecture

LLMs are a type of
deep learning model
designed to process

and understand natural

language data

¥




models

Bert multilingual base -

How large?

<= lLarge number of parameters

parameters

ELMo small
ELMo medium
ELMo original
ELMo large
Bert base A

Bert large -

GPT

GPT-2 small -
GPT-2 medium -
GPT-2 large A
GPT-2 extra large
GPT-3 small
GPT-3 medium
GPT-3 large
GPT-3 extra large
GPT-3 « GPT-3 »

10 10 10° 10" 10"

number of parameters

More recent models: PaLM (540B), OPT
(175B), BLOOM (176B)...

Large training dataset

corpus size

ELMo

ELMo large
Bert

Bert multilingual
GPT

GPT-2

GPT-3

models

10 10 10 10
tokens

Image source: https://hellofuture.orange.com/en/the-
gpt-3-language-model-revolution-or-evolution/




How promising?

QS
O

single model can be used for ditferent tasks

A
<= |'he fine-tune process requires mimimal field data
E

O
G

he performance 1s continuously growing with more data and
parameters

LOGICAL INFERENCE CHAINS

SEMANTIC PARSING COMMON-SENSE REASONING
PROVERBS PATTERN RECOGNITION
ARITHMETIC | TRANSLATION ARITHMETIC TRANSLATION
CODE COMPLETION CODE COMPLETION DIALOGUE
| JOKE EXPLANATIONS
SUMMARIZATION READING COMPREHENSION o PRYSICS QA
e SUMMARIZATION LANGUAGE UNDERSTANDING

62 billion parameters
p 540 billion parameters




| = =
What’s the secret sauce?

<= LLMs are composed of several key building blocks that enable
them to ethiciently process and understand natural language data

Tokenization

Transfer

: : Embedding
earning

LLMs

Building
Blocks

Pretraining




Key components: lokenization

<= In order to get our computer to understand any text, we need to
break that word down 1n a way that our machine can understand

<= 'lokenization 13 a way of separating a piece ot text into smaller
units called tokens

<+ "Jokens can be either words, characters, or subwords

Tokenization

witeasor. —» ;

Tokenization: Turning words into tokens

For example, if the sentence is “Write a story”, then the 4 corresponding tokens will be «<uwrite> , <a> , <story> ,and

\<.> .




Key components: Embedding

<= Machine learning or deep learning models cannot process text, so
we need to figure out a way to convert these textual data into
numerical data

<= Every piece of text turns into a vector (a list) of numbers

Embedding
— 2.13 | -0.42 -1.03
— 0.91 0.56 0.23

—_ -1.56 1.34 0.14

I —— 1.42 -1.32 -2.41

In general embeddings send every word (token) to a long list of numbers.




Key components: Positional encoding

<= The vectors corresponding to the words “Write”, “a”, “story”’, and
“.” become the modified vectors that carry information about

faenEpesiion labeled “Write (1), “a(2), “stor: (912 amnd s =

Positional encoding

213 | 042 | .. | -1.03 | + [

H 091 | 0.56 023 | + -
4156 | 134 | .. | 014 |+ NN
I 142 | 132 | .. | 24 |+ GBS

Positional encoding adds a positional vector to each word, in order to keep track of the positions of the words.

g e B




QS
A o<4

/

)
"

Iranstormer architecture

Introduced in the paper
“Attention Is All You Need” by

Vaswani et al. in 2017

Ground-breaking architecture
that set SOTA on translation
and later all other NLP tasks

The key component 1s the self-
attention mechanism, which
enables the model to attend to
difterent parts of the input
sequence to compute
representation for each position

Output
Probabilities
t
| Softmax |
|  Linear |
-
| Add & Norm h\
Feed
Forward
—
s ~ | Add & Norm Je=~
> Add & Norm ) Multi-Head
Feed Attention
Forward D D) N x
{ ( J~
Add & Norm
N x T
~»| Add & Norm ) NMasked
Multi-Head Multi-Head
Attention Attention
o Y, \. — )
Positiqnal @_@ ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)




Betore ~2020

Computer Vision

Convolutional NNs (+ResNets)

Feature maps

(1] Convolutions

Convolutions

Subsampling

Speech

Deep Belief Nets (+non-DL)
A

RBM DBN
| |

RBM a DBN
| |

GRBM E DBN

[1] CNN image CC-BY-SA by Aphex34 for Wikipedia https://commons.wikimedia.org/wiki/File:Typical_cnn.png
[2] RNN image CC-BY-SA by GChe for Wikipedia https://commons.wikimedia.org/wiki/File:The_LSTM_Cell.svg

h e

Translation

Subsampling Fully connected

o)

Natural Lang. Proc.

Recurrent NNs (+LSTMs)

Seq2Seq

s a |

<s> S a

u t <

u

t

RL

BC/GAIL

Algorithm 1 Generative adversanal imitation learning

I: Input: Expert trajectories 75 ~ m g, initial policy and discriminator parameters ., wy
2fori=0.12.. do
3 Sample trajectories ; ~
4:  Update the discriminator parameters from w, to w,~; with the gradient
B [V log(Du(s,a))] + B [Valog(1 - Dy(s,a))] (17
5:  Take a policy step [rom &, 10 8,4, using the TRPO rule with cost function log{ D, ,(s.a)).
Specifically, take a KI.-constrained natural gradient step with
E, [Velogmylals)Q(s,a)] ~ AVyH(xg), as
. )
where Q(3,a) = E, [log(D,,., (s.a)) |8 = 8,09 = a

6: end for

http://lucasb.eyer.be/transformer



http://lucasb.eyer.be/transformer

Computer Vision

Protiabdtios
EETTTTE

Lrear

-
A3 & N

]
Formad

A & Nore
feed
Forword Nx
/
Posisoral ®_(’ Postioral
Encodng Ervcodng
rou Outpnt
rtensctnng Ertoawy
outs

Speech

Quipun
Probabdtins

A2 & Nore

-
encotrg QO

ou Outgut
Ervboddng Ermboding
Fouts

Now

Natural Lang. Proc.

Quipun
Probiabdtins

. J

3"‘”“‘6; 3 Postioral

Crcodng Ercoang
Yo £

Errboddng Errtosiyg

Fouts Outputs
S

ranslation

Probiabdtins

ETTTTE
(_Llres )
A3 A Norn
=)
Formard
! —
Ad2 & Norm
Ad & Sorms ;
Feed Aorton
Forward g N
]
. Ad3 & Norm
Wasked
M Haad M Head
Aeterton
- - —
L ——
Posisoral Postiona
Encoang CD 4 Encodng
vou
Errbasdng
Fouts Outputs

(10 Pty

Reinf. Learning

Probabdtins

Add 5 o
Feed
Forword

. J/

Possora 3 Postcr o
€ -»<l'~,|® Ercotng
Oregt
Erenxwy

puts Outpe
(0 g

Quiput
Probabdtins

“oMrra

A & o
Nx
j—
/
F ol Postioral
Encoung 1
d Ercodng
vou
Errbaddng
puts Outputs

(10 Pty

http://lucasb.eyer.be/ transformer




Iranstormer

< A transformer 1s an encoder-decoder model that uses the attention mechanism

<= Encoder encodes the input sequence and passes it to the decoder

<+ The decoder decodes a representation for a relevant task

Je suis etudiant

Input

Transformer

\d

Encoding Decoding
Component Component

Output

| am a student

Massive advantage over RNN based
encoder-decoder architecture since
it allows us to:

e Take advantage of parallelization
GPU/TPU.

e Process much more data in the
same amount of time.

e Process all tokens at once!




ENCODER

Iranstormer

- ? -
r
Feed Forward
\_
&
r
Self-Attention
-
e 1, =
OUTPUT [ | am a studentJ
4
(- - L \)
ENCODER = DECODER
\ \ )
B &
4 ( B
ENCODER DECODER
\_ \ )
a» A
a ( R
ENCODER DECODER
\ \ )
4 3
4 ( R
ENCODER DECODER
\_ \_ )
& &
( 4 N
ENCODER DECODER
\ . )
& 4
a 4 N
ENCODER DECODER
\ - )
\_ /Y v,
|
INPUT {ja Suis étudmm]

DECODER

t

{

Feed Forward

4

(

Encoder-Decoder Attention

—t

'Y

(

Self-Attention

t

https://jalammar.github.io/illustrated-transtormer



https://jalammar.github.io/illustrated-transformer

Inner workings of the Encoder

<= Begin by taking a word embedding for each input word

X1 X2 X3

Je sSuis etudiant

<= T'he embedding only enters 1n the bottom-most encoder

<= FKach encoder receives a list of vectors

<= In the bottom encoder these are the word embeddings

<= But 1in other encoders, 1t 1s the output of the encoder that’s directly below

<= T'he size of this list 1s a hyperparameter we can set — you can think of this as
the length of the longest sentence 1n our training dataset




Inner workings of the Encoder

QS
E o<

layer

ENCODER A

4

<= 'he word 1n each position flows through 1ts own path in the encoder
glE

here are dependencies between these paths 1n the self-attention

t t

4
\

t

Self-Attention

J




Key components: Attention

<+ 'T'he same word can be used with different meanings

= Attention 1s a very useful technique that help LMs understand the
context. Gonsider the following two sentences:

<= Sentence 1: The bank of the rver

/
o

Sentence 2: Money in the bank
<= ''he word ‘bank’ appears 1n both, but with different definitions.

= In sentence 1, we are referring to the land at the side ot the river,
and 1n the second one to the institution that holds money.

<= The computer has no 1dea of this, so we need to somehow 1nject
that knowledge 1nto it




Key components: Attention

<= What can help us? Well, 1t seems that the other words 1n the
sentence can come to our rescue.

<= For the first sentence, the words ‘th¢’, and ‘of do us no good.

= But the word ‘rwer’ 1s the one that 1s letting us know that
we’re talking about the land at the side of the river.

= Similarly, in sentence 2, the word ‘money’ 1s the one that 1s
helping us understand that the word ‘bank’ 1s now referring
to the 1nstitution that holds money.




Key components: Attention

<= Attention moves the words 1n a sentence closer in the word embeddings

<= 'The word “bank” in the sentence “Money mn the bank” will be moved
closer to the word “money”.

= Equivalently, in the sentence “7 e bank of the rwer”, the word “bank” will
be moved closer to the word “rwer”.

<= T'hat way, the modified word “bank” vector in each of the two sentences
will carry some of the information of the neighboring words, adding
context to it.

Attention

> d D

il a. [T

Money in the bank Attention Money in the bank

Attention helps give context to each word, based on the other words in the sentece (or text).




Key components: Attention

<= 'T'he attention step used 1n transtormer models 1s actually
much more powertul

< Self attention: allows the model to look at other words 1n the
Input sequence to obtain a better contextualized encoding for
each word

= This essentially bakes in the “understanding” of other
relevant words 1nto the one we’re currently processing

<= Multi-head attention: several different embeddings are used
to modity the vectors and add context to them




Sell attention

= |. Create three vectors corresponding to each of the encoder’s
Input vectors

= For each word, we create a Query, a Key, and a Value vector,
by multiplying the embedding by three matrices that we
train during this training process

Input Thinking Machines

Embedding €1 0 I e x| | | |

Queries a[ T 1] a:[_ [ 1] [ wa
q, = x, x W€ g, = X, x WA |

Keys o I I ke[ T T ] WK

Values v+ [T v WV

— V — \V4
v1—x1xW v2—x2xW




Sell attention

<+ 2. Galculate the attention score, which determines how much we
should focus on the other words 1n the input sentence as we
encode this word

<= scores each word 1n the input sentence against all other words

= calculated by taking the dot product ot the query vector with
the key vector of the respective words we’re scoring

Input Thinking Machines
Embedding X1 X2

Queries g [T q: [T
Keys ki 1T k2 [T
Values vi [T V2 [ |

Score qi* ki= qi* ko=




Sell attention

<= 3. Divide the scores by 8 (sqrt of dimension, this 1s just a
hyperparameter), then pass them to the Softmax

Input Thinking Machines
Embedding X1 X2
Queries q1 g2 Usually the same position

will have the highest
softmax score, but it’s
Keys Ki1 K2 useful to attend to

another word that is
relevant to the current

Values V1 V2 word.
>
Score qi e ki= qi ¢ k2 = ~
~
Divide by 8 (vdx ) ~
A
Softmax




SE
O

Sell attention

4. Multiply value vectors ot all words by the Softmax score

<= |'he intuition 1s to keep intact the values of the word(s) we
want to focus on and drown-out irrelevant words

Input

- Embedding
<= Sum up the weighted value vectors
Queries
<= Obtain the output of the self- S
attention layer at this position (for Values
the first word) Score
Divide by 8 (Vdy )
Softmax
= The resulting vector is sent to the sofmeax
feed-forward neural network. Ve

Sum

Thinking

X1|

L L 1]

a1

K

V1

[LT]

[T 1]
[T 1]

qie* ki=

V1

Z1

Machines

xe| | | [ |
o [T

[
o

q,'kg:

V2

z. [T




Ethcient computation 1n matrix terms

<= (alculate the Query, Key; T
and Value “matrices” for the
entire context, by packing
our embeddings into a x -
matrix X and multiplying it
by the weight matrices




Ethcient computation 1n matrix terms

<= Qutputs of the self-attention layer:

softmax( )




A tew more ornaments: (a) Multiple heads

ATTENTION HEAD #0

Qo

W@
Ko

WK
Vo

Q1

K1

ATTENTION HEAD #1

| | | W4@

WK

Vi




A tew more ornaments: (a) Multiple heads

<= We end up with multiple different Z matrices

ATTENTION
HEAD #0

X

Thinking

Machines

ATTENTION
HEAD #1

Calculating attention separately in
eight different attention heads

\J

ATTENTION
HEAD #7




A tew more ornaments: (a) Multiple heads

= (oncatenate Z matrices and then multiply with an additional
welght matrix
1) Concatenate all the attention heads 2) Multiply with a weight

matrix that was trained
jointly with the model

X

3) The result would be the = matrix that captures information
from all the attention heads. We can send this forward to the FFNN




A few more ornaments: (a) Multiple heads

<= Putting all together:

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting = matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix \W" to
% with weight matrices  Q/K/V matrices produce the output of the layer
: | K
Thinking _ WO v QO
Machines Wo Ko
Vo Wo
w;o sk
*In all encoders other than #0, WK Qi E‘Tfif
we don't need embedding. W,V K O
We start directly with the output Vi ]
of the encoder right below this one EEEE
R — “ee “ee ::—:14

WX Q7




A few more ornaments: (b) Positional encodings

<= So far, we have no way to account for the order of the words in the input sequence.

< 'lo address this, we add a vector corresponding to each mput position which helps it
determine the position of each word.

<= Positional encodings can be fixed (following a specific pattern) or may be learnt

C

ENCODER #1 '_’ ' DECODER #1

C ENCODER #0 )_»( DECODER #0
EMBEDDING
WITH TIME

SIGNAL X1 | | X2 X3
Pgﬁg&%’f,ﬁé t [ [ 1] [ [ [ ] ] [ [ [ ]

+ + +

EMBEDDINGS  x:[ | | | | [ [ T 1] xs [ [ [ ]

INPUT

SUIS

etudiant




A tew more ornaments: (¢) Residuals

= A few add-ons to stabilize training of deeper networks: Each sub-
layer (self-attention, finn) in each encoder has a residual connection
around 1t, and 1s followed by a layer-normalization step

4 4
C( Add & Normalize )\
. 4 4
C Feed Forward ) ( Feed Forward )
e ;:_"*"""""'"'"z;_"’
4 r ] 4
w| ,» LayerNorm( + )
o |
1k Y
2 — -
- C Self-Attention )
I = s s T~ = ==
POSITIONAL é é
ENCODING
x+ [ x: [T 117

Thinking Machines




T'he Encoder-Decoder 1n synch

<= T'he decoder 1s very similar. But 1t must look at the input representations
<= Output of the top encoder 1s transformed into a set of key and value attention vectors.

<= These are used by each decoder in a “encoder-decoder attention” layer (also called
cross-attention) which helps the decoder focus on appropriate places in the mput
sequence

f

C Linear + Softmax )
t

fa By _ 4 ™
ENCODER DECODER
\_ ) \_ =
. )
i) f =N
ENCODER DECODER
Uy / \ J
EMBEDDING
WITHTIME [0 [T [T
SIGNAL

EMBEDDINGS HEEE LLf1] EEEE

INPUT Je Suis étudiant




T'he Encoder-Decoder 1n synch

<= In the decoder, at test time, the output 1s generated token by token

as the output ot each step 1s ted to the bottom decoder 1n the next
time step.

Decoding time step: 1@3 4 56 OUTPUT

Given the final layer’s
token level representation,
predict the output token
linear projection. layer [

fF Softmax)
e o Ve (__tinear +Softmax )
4 N I =Y
ENCODERS DECODERS
= e - -
EMBEDDING t ¢ t 4
WITHTIMe CEDE EEEE SRR (TTT
SIGNAL
EMBEDDINGS DIEE [NEEE DEEE (T
INPUT Je suis  étudiant PREVIOUS

OUTPUTS




Masking

<= In the decoder, the selt-attention layer 1s only allowed to attend to earlier
positions 1n the output sequence. Otherwise, we’d be cheating!

<= 'T'his 1s done by masking future positions (setting the dot product score to
-inf) before the Softmax step in the self-attention calculation.

-inf

— softmax( )




Iranstormer: a summary

<= T'he last step: a softmax layer turns scores into probabilities

<= Repeat: mput the text “Write a story. Once” into the model, and most likely, the

output will be “upon”

= Repeating this step again and again, the transtormer will end up writing a story,

)

such as “Once upon a time, there was a ...”.

Transformer

Aardvark

Once

Somewhere

Write a story.

There

Zygote

The softmax layer turns the scores into probabilities, and these are used to pick the next word in the text.

e T

T R R




Iranstormer: a summary

<+ Tokenizer: Turns words into tokens
<= Embedding: Turns tokens into numbers (vectors)
<= Positional encoding: Adds order to the words in the text

<= Transformer block: Guesses the next word. It 1s formed by an attention

block and a teedforward block
<= Attention: Adds context to the text

<= Feedforward: Is a block in the transformer neural network, which guesses
the next word

= Softmax: Turns the scores into probabilities in order to sample the next word




Key components: lranster learning

QO
G®

ransformers are not always better than RNNs by themselves

S

JE
- However, what has made Iranstormers popular 1s that they can
be combined with the 1dea of transter learning

<= Transtormers have become the go-to model for building large
pretrained language models which can be adapted for several
tasks

<= The 1dea of transfer learning 1s to use the knowledge gained
while solving one problem and applying it to a different but
related problem




Key components: lranster learning

<= For example, knowledge gained while learning to recognize cars could be
applied when trying to recognize trucks

<= In fact, if we have a large dataset of cars, we can pretrain a model on this
dataset, and may be able to do well on recognizing trucks by finetuning the
model on a small dataset of trucks

= In natural language processing (NLP), we can train a NN language model
(on vast text corpora), and then use 1t to transfer that knowledge to any
target task in NLLP we care about




Notable LLLMs

Decoder-only Encoder-only Enc-Dec
GPT BERT T5

Das ist gqut.

A storm in Attala caused 6 victims.

[sat_] This is not toxic.
Qutput Output
Probabilities Probabiities
[*] (*]  [sat_] [*] [the_] [*)
Lincas
( N Foed
Add & Norm g Foeward
' _\
F;e\l?:rd X CONHT] Add & Norm
Feed ’12%522; Mus-Head
Forward eed Astention
Add & Norm Forward _L) Nx
.
Masked ) Add 8 Norm
Multi-Head Nx ~{Add & Norm ) Nx | —((Agd & Nom ) ——
Attention - Multi-Head Muti-Head
rvbm-Hgad Attantion Altention
| ;_J—J ) Attention i 1 J
A_ ) \ ] J j—" )
Positional o J F_’l)-_;ltu al A 4 Positional
& Encoding Positional Encoding Encoding
. 1 w nput Output
. n?;:g:tn Encoding D Em:x:;dng Errt;og:;m
I
9 Input ] I
Embedding Inputs Cutputs
OU{DUIS (shifted right)
(shifted right) Inputs

Translate EN-DE: This is gocod.

[START] [The ] [cat ] Summarize: state authorities dispatched..
) T - = > of- [c MAS 31
o=l =9 i) Is this toxic: You look beautiful today!




Lab 7 - preview

<= (oogle account to
use Google Golab

= Save a copy of this
Colab notebook file
Into your google
drive: File -> Save a
copy 1n Drive

< Work on the saved
copy

e

CO

C O 8 == https://colab.research.google.com/drive/1Tb46AR

& FT_BERT TC.ipynb -

-~

{x}

" I

IFiIe Edit View Insert Runtime Tools Help Changes will not be saved

Locate in Drive

New notebook
Open notebook
Upload notebook

Save a copy in Drive
Save a copy as a GitHub Gist
Save a copy in GitHub

Save

Download

Print

Ctrl+O

Classification

1s from Transformers) is a langua
; an attention mechanism to proce
ts surroundings (left and right of ti
n, and question answering.

Ctri+S

sformer. We currently have two va

Ctri+P



https://colab.research.google.com
https://colab.research.google.com/drive/1Tb46AR_3-9xL2pAV2KqONxaQ6kWGsW8K?usp=sharing

{x}

Lab 7 - preview

<= Notebook setting: Runtime -> Change runtime type -> Hardware

accelerator: GPU

& FT_BERT_TC.ipynb 7+

File Edit View Insert Runtime Tools Help All changes saved

+ Code + Text Run all Ctrl+F9
Run before Ctrl+F8
Flne'Tunlng B Run selection Ctrl+Shift+Enter
Run after Ctrl+F10
. Interrupt execution Ctrl+M |
~ 1. Introductiol _

Restart runtime Ctrl+M .

BERT (Bidirectional En¢  Restartand run all

based neural network ¢ Disconnect and delete runtime

to learn the context of :

. . Change runtime type
sentiment anaIyS|s, nar

Architecture Manage sessions

. View resources
The BERT architecture
View runtime logs

'

Notebook settings

Runtime type
Python3 v

Hardware accelerator

GPU O
GPU type
T4 v

Want access to premium GPUs? Purchase additional compute units

[J Automatically run the first cell or section

|:| Omit code cell output when saving this notebook

Cancel

Save




)
%

)
%

)
o

)
9

Lab 7 - preview

Click on connect, 1t will connect to a hosted runtime on cloud by default

& Copy of FT_BERT TC.ipynb - B Comment &% Share X e

cC
File Edit View Insert Runtime Tools Help Lastsaved at 6:54 PM
Connect ~ A

+ Code + Text
N Click to connect :

Q
Fine-Tuning BERT for Text Classification
(x)

aen

Now, you are ready to execute each coding cell sequentially by clicking

on the Run cell button

o @ import torch
from torch.utils.data import TensorDataset, DatalLoader, RandomSampler,
ertTokenizer, BertForSequenceClassification

{Run cell (Ctrl+Enter)
on import train_test_split

cell has not been executed in this session

import pandas as pd
import numpy as np

from tabulate import tabulate
from tqdm import trange
import random




