
Introduction of Large
Language Models

Li Chen
University of Louisiana at Lafayette

What is a language model?

A language model is a probability distribution over
sequences of words

More formally, given a sequence of words
, it computes the probability

distribution of the next word :

Joint distribution of a sequence by chain rule:

x(1), x(2), ⋯, x(t)

x(t+1)

P(x(t+1) |x(t), ⋯, x(1))

P(x(1), ⋯, x(t)) = P(x(1))P(x(2) |x(1))⋯P(x(t) |x(t−1), ⋯, x(1))

What is a language model?

A language model predicts a word in a context:

A key part of decoding tasks: speech recognition, spelling
correction, and language generation tasks: machine translation,
summarization, story generation

What is a language model?

What is a language model?

What language models can do?

What language models can do?

What language models can do?

What language models can do?

https://platform.openai.com/examples

https://platform.openai.com/examples

Language modeling history

N-gram models
An n-gram is a sequence of n words in a sentence

Use the previous n-1 words in a sequence to predict the next
word

How? Count how often words follow word sequences in a
training corpus; divide to get cond. prob.

The big red dog

Unigrams:	 P(dog) Bigrams:	 P(dog|red)

Trigrams:	 P(dog|big red) Four-grams: P(dog|the big red)

A Bigram Grammar Fragment

A Bigram Grammar Fragment

A Bigram Grammar Fragment
P(I want to eat British food) = P(I|<start>) P(want|I) P(to|want)
P(eat|to) P(British|eat) P(food|British) = .25*.32*.65*.26*.001*.60
= .000080

P(I want to eat Chinese food) = .00015

Probabilities seem to capture “syntactic” facts, “world knowledge”

eat is often followed by a noun phrase

British food is not too popular

Limitations: curse of dimensionality: zillions of parameters;
limiting context

Neural language models
A feed-forward neural network was proposed in 2003 by Bengio et al.

Solve the curse of dimensionality: dense, low-dimensionality real-
number word vectors

Recurrent NN-based LMs
Recurrent neural networks RNNs (Mikolov et al., 2010) can memorize the
previous outputs when receiving the next inputs

Long Short-Term Memory
Recurrent Neural Networks suffer from short-term memory

vanishing gradient problem: the gradient shrinks as it back propagates through
time

If a sequence is long enough, it’ll have a hard time carrying information from earlier
time steps to later ones

Solution: LSTMs [Zaremba et al. 2014] and Gated Recurrent Units (GRUs)

they have internal mechanisms called gates to regulate the flow of information

these gates can learn which data in a sequence is important to keep or throw away

GRU is quicker to compute and has fewer parameters than LSTM

Large language models
Large, general-purpose language models, can be
pre-trained and then fine-tuned for specific
purposes

How large?
Large number of parameters Large training dataset

How promising?
A single model can be used for different tasks

The fine-tune process requires minimal field data

The performance is continuously growing with more data and
parameters

What’s the secret sauce?
LLMs are composed of several key building blocks that enable
them to efficiently process and understand natural language data

Key components: Tokenization
In order to get our computer to understand any text, we need to
break that word down in a way that our machine can understand

Tokenization is a way of separating a piece of text into smaller
units called tokens

Tokens can be either words, characters, or subwords

Key components: Embedding
Machine learning or deep learning models cannot process text, so
we need to figure out a way to convert these textual data into
numerical data

Every piece of text turns into a vector (a list) of numbers

Key components: Positional encoding

The vectors corresponding to the words “Write”, “a”, “story”, and
“.” become the modified vectors that carry information about
their position, labeled “Write (1)”, “a (2)”, “story (3)”, and “. (4)”.

Transformer architecture
Introduced in the paper
“Attention Is All You Need” by
Vaswani et al. in 2017

Ground-breaking architecture
that set SOTA on translation
and later all other NLP tasks

The key component is the self-
attention mechanism, which
enables the model to attend to
different parts of the input
sequence to compute
representation for each position

Before ~2020

http://lucasb.eyer.be/transformer

http://lucasb.eyer.be/transformer

Now

http://lucasb.eyer.be/transformer

Transformer
A transformer is an encoder-decoder model that uses the attention mechanism

Encoder encodes the input sequence and passes it to the decoder

The decoder decodes a representation for a relevant task

Transformer

https://jalammar.github.io/illustrated-transformer

https://jalammar.github.io/illustrated-transformer

Inner workings of the Encoder
Begin by taking a word embedding for each input word

The embedding only enters in the bottom-most encoder

Each encoder receives a list of vectors

In the bottom encoder these are the word embeddings

But in other encoders, it is the output of the encoder that’s directly below

The size of this list is a hyperparameter we can set – you can think of this as
the length of the longest sentence in our training dataset

Inner workings of the Encoder
The word in each position flows through its own path in the encoder

There are dependencies between these paths in the self-attention
layer

Key components: Attention
The same word can be used with different meanings

Attention is a very useful technique that help LMs understand the
context. Consider the following two sentences:

	 Sentence 1: The bank of the river

	 Sentence 2: Money in the bank

The word ‘bank’ appears in both, but with different definitions.

In sentence 1, we are referring to the land at the side of the river,
and in the second one to the institution that holds money.

The computer has no idea of this, so we need to somehow inject
that knowledge into it

Key components: Attention
What can help us? Well, it seems that the other words in the
sentence can come to our rescue.

For the first sentence, the words ‘the’, and ‘of’ do us no good.

But the word ‘river’ is the one that is letting us know that
we’re talking about the land at the side of the river.

Similarly, in sentence 2, the word ‘money’ is the one that is
helping us understand that the word ‘bank’ is now referring
to the institution that holds money.

Key components: Attention
Attention moves the words in a sentence closer in the word embeddings

The word “bank” in the sentence “Money in the bank” will be moved
closer to the word “money”.

Equivalently, in the sentence “The bank of the river”, the word “bank” will
be moved closer to the word “river”.

That way, the modified word “bank” vector in each of the two sentences
will carry some of the information of the neighboring words, adding
context to it.

Key components: Attention
The attention step used in transformer models is actually
much more powerful

Self attention: allows the model to look at other words in the
input sequence to obtain a better contextualized encoding for
each word

This essentially bakes in the “understanding” of other
relevant words into the one we’re currently processing

Multi-head attention: several different embeddings are used
to modify the vectors and add context to them

Self attention
1. Create three vectors corresponding to each of the encoder’s
input vectors

For each word, we create a Query, a Key, and a Value vector,
by multiplying the embedding by three matrices that we
train during this training process

Self attention
2. Calculate the attention score, which determines how much we
should focus on the other words in the input sentence as we
encode this word

scores each word in the input sentence against all other words

calculated by taking the dot product of the query vector with
the key vector of the respective words we’re scoring

Self attention
3. Divide the scores by 8 (sqrt of dimension, this is just a
hyperparameter), then pass them to the Softmax

Self attention
4. Multiply value vectors of all words by the Softmax score

The intuition is to keep intact the values of the word(s) we
want to focus on and drown-out irrelevant words

Sum up the weighted value vectors

Obtain the output of the self-
attention layer at this position (for
the first word)

The resulting vector is sent to the
feed-forward neural network.

Efficient computation in matrix terms

Calculate the Query, Key,
and Value “matrices” for the
entire context, by packing
our embeddings into a
matrix X and multiplying it
by the weight matrices

Efficient computation in matrix terms

Outputs of the self-attention layer:

A few more ornaments: (a) Multiple heads

A few more ornaments: (a) Multiple heads

We end up with multiple different Z matrices

A few more ornaments: (a) Multiple heads
Concatenate Z matrices and then multiply with an additional
weight matrix

A few more ornaments: (a) Multiple heads
Putting all together:

A few more ornaments: (b) Positional encodings
So far, we have no way to account for the order of the words in the input sequence.

To address this, we add a vector corresponding to each input position which helps it
determine the position of each word.

Positional encodings can be fixed (following a specific pattern) or may be learnt

A few add-ons to stabilize training of deeper networks: Each sub-
layer (self-attention, ffnn) in each encoder has a residual connection
around it, and is followed by a layer-normalization step

A few more ornaments: (c) Residuals

The Encoder-Decoder in synch
The decoder is very similar. But it must look at the input representations

Output of the top encoder is transformed into a set of key and value attention vectors.

These are used by each decoder in a “encoder-decoder attention” layer (also called
cross-attention) which helps the decoder focus on appropriate places in the input
sequence

The Encoder-Decoder in synch
In the decoder, at test time, the output is generated token by token
as the output of each step is fed to the bottom decoder in the next
time step.

Masking
In the decoder, the self-attention layer is only allowed to attend to earlier
positions in the output sequence. Otherwise, we’d be cheating!

This is done by masking future positions (setting the dot product score to
-inf) before the Softmax step in the self-attention calculation.

Transformer: a summary
The last step: a softmax layer turns scores into probabilities

Repeat: input the text “Write a story. Once” into the model, and most likely, the
output will be “upon”

Repeating this step again and again, the transformer will end up writing a story,
such as “Once upon a time, there was a …”.

Transformer: a summary
Tokenizer: Turns words into tokens

Embedding: Turns tokens into numbers (vectors)

Positional encoding: Adds order to the words in the text

Transformer block: Guesses the next word. It is formed by an attention
block and a feedforward block

Attention: Adds context to the text

Feedforward: Is a block in the transformer neural network, which guesses
the next word

Softmax: Turns the scores into probabilities in order to sample the next word

Transformers are not always better than RNNs by themselves

However, what has made Transformers popular is that they can
be combined with the idea of transfer learning

Transformers have become the go-to model for building large
pretrained language models which can be adapted for several
tasks

The idea of transfer learning is to use the knowledge gained
while solving one problem and applying it to a different but
related problem

Key components: Transfer learning

For example, knowledge gained while learning to recognize cars could be
applied when trying to recognize trucks

In fact, if we have a large dataset of cars, we can pretrain a model on this
dataset, and may be able to do well on recognizing trucks by finetuning the
model on a small dataset of trucks

In natural language processing (NLP), we can train a NN language model
(on vast text corpora), and then use it to transfer that knowledge to any
target task in NLP we care about

Key components: Transfer learning

Notable LLMs

Lab 7 - preview

Google account to
use Google Colab

Save a copy of this
Colab notebook file
into your google
drive: File -> Save a
copy in Drive

Work on the saved
copy

https://colab.research.google.com
https://colab.research.google.com/drive/1Tb46AR_3-9xL2pAV2KqONxaQ6kWGsW8K?usp=sharing

Lab 7 - preview

Notebook setting: Runtime -> Change runtime type -> Hardware
accelerator: GPU

Lab 7 - preview
Click on connect, it will connect to a hosted runtime on cloud by default

Now, you are ready to execute each coding cell sequentially by clicking
on the Run cell button

